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Biological content

The phosphatases are a family of signal transduction
enzymes which together with protein kinases con-
trol cellular protein phosphorylation. The PRL class
of phosphatases constitutes a novel class of small
(19.5 kDa) prenylated PTPases (Zeng et al., 2000)
with oncogenic activity (Cates et al., 1996). They
contain the consensus PTPase active site sequence
VHCXAGXXR. PRL-1 and PRL-2 are ubiquitously
expressed (Zeng et al., 1998); PRL-3 is prominently
expressed in cardiac and skeletal muscle (Matter et al.,
2001). Recent SAGE (serial analysis of gene ex-
pression) experiments showed that PRL-3 is highly
overexpressed in liver metastases of colorectal cancer,
but not in nonmetastatic tumors and in normal colorec-
tal epithelium (Saha et al., 2001). Further support for
the involvement of PRL-3 in metastasis was provided
by the finding of gene amplification in a significant
fraction of metastatic lesions from different patients
(Saha et al., 2001). Because of its high levels of ex-
pression, PRL-3 may constitute a useful marker for
metastasis and possibly also a new therapeutic target.
More studies at both the physiological and biochemi-
cal levels are needed to evaluate the involvement and
possible causative role of PRL-3 in metastasis. Toward
these general objectives, we have initiated structure-
function studies to gain a better understanding of the
molecular function and substrate specificity of PRL-3.
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Methods and experiments

PRL-3 sequence was amplified by RT-PCR subcloned
into pET15b vector (Novagen Inc., Madison, WI) and
over-expressed in E. coli BL21(DE3) as a His-tagged
fusion protein. The protein was purified by immobi-
lized metal affinity chromatography on Ni2+-loaded
chelating Sepharose (Amersham Pharmacia Biotech,
Piscatqway, NJ). Isotopically enriched PRL-3 was
prepared from cells grown on minimal M9 media
containing 15N-ammonium chloride with or without
13C6-glucose (Cambridge Isotopes Laboratory, An-
dover, MA). The N-terminal His-tag was cleaved from
PRL-3 by treatment overnight with thrombin (Haema-
tologic Technologies Inc., Essex Junction, VT) at 6
units per mg of fusion protein at room temperature.
Benzamidine sepharose and Ni2+-loaded chelating
Sepharose were used to remove thrombin and the His-
tag from PRL-3. The resulting protein contains three
residues (Gly-Ser-His) from the vector’s cleavage site.
The expressed protein does not include the C-terminal
prenylation site, and comprises amino acids 1 to 169
of PRL-3. NMR samples were 3 mM in 50 mM phos-
phate buffer, 100 mM NaCl, 10 to 12 mM DTT and
0.1 mM sodium azide at pH 6.8. NMR experiments
(Bax and Grzesiek, 1993) were performed at 308 K
on Bruker DRX500 and 800 MHz Varian UNITYplus
spectrometers.

Main-chain Cα, Hα, N, NH, CO and side-
chain Cβ resonances were assigned using HNCACB,
CBCA(CO)NH, HNCO and HNHA experiments. The
side-chain signal assignments were obtained from 1H-
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Figure 1. 500 MHz 1H-15N HSQC spectrum of [ul-15N] PRL-3.
The PRL-3 sample conditions: 3 mM, 5% D2O, 50 mM sodium
phosphate, 100 mM NaCl, 12 mM DTT, pH 6.8, 308 K. Amino acid
labels were omitted from the middle of HSQC for clarity.

13C HSQC, 3D HCCH-TOCSY, CC(CO)NH-TOCSY,
1H-15N-HSQC TOCSY and 1H-15N-HSQC NOESY.
Chemical shifts were measured relative to internal
DSS for 1H and calculated for 13C and 15N as-
suming γ15N/γ1H = 0.101329118 and γ13C/γ1H =
0.251449530 (Wishart et al., 1995). NMR spectra
were processed using Bruker XWINNMR and GIFA
(Pons et al., 1996) software and analysed with XEASY
(Bartels et al., 1995).

Extent of assignments and data deposition

All the 1H and 15N backbone resonances were as-
signed except for the 3 amino acids from the his-tag
and residues Met1, Met4, Asn5, Asn27, His103,
His166 and Lys167, for which signals could not be
detected on HSQC spectra. The Hα, Hβ, Cα, Cβ and
CO resonances were assigned for all PRL-3 residues

except Met4, Pro75, Pro76 and His166. Nearly com-
plete 1H side-chain assignments, including aromatic
rings, were obtained for non-proline residues. Figure 1
shows the 1H-15N HSQC spectrum of uniformly 15N-
enriched PRL-3. The assignments have been deposited
in the BioMagResBank (http://www.bmrb.wisc.edu)
under the accession number 5455.
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